Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « <u>01</u> » марта 20 <u>23</u> г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина: Газовая д	Газовая динамика двигателей летательных аппаратов			
	(наименование)			
Форма обучения:	очная			
	(очная/очно-заочная/заочная)			
Уровень высшего образования:	магистратура (бакалавриат/специалитет/магистратура)			
	(бакалавриат/специалитет/магистратура)			
Общая трудоёмкость:	144 (4)			
	(часы (ЗЕ))			
Направление подготовки:	24.04.05 Двигатели летательных аппаратов			
	(код и наименование направления)			
Направленность: Суперкомп	ьютерные технологии проектирования двигателей			
	летательных аппаратов			
	(наименование образовательной программы)			

1. Общие положения

1.1. Цели и задачи дисциплины

Целью дисциплины является формирование профессиональных компетенций, связанных с газодинамическими процессами, протекающими в основных частях и элементах двигателя летательного аппарата; формирование научно-технического мировоззрения на основе знания особенностей сложных технических систем; воспитание технической культуры.

Задачи дисциплины:

- изучение основ теории течения продуктов сгорания ракетных топлив (однофазных и двухфазных)
 в камере сгорания и в сопле;
- ознакомление с современными подходами и методами в области моделирования газодинамических процессов;
- формирование умения расчёта процессов газодинамики с использованием современных компьютерных программ;
- формирование навыков построения математических моделей газодинамики элементов ракетного двигателя (камеры сгорания и сопла) и проверки их адекватности.

1.2. Изучаемые объекты дисциплины

- газодинамические потоки в элементах двигателя летательного аппарата: камере сгорания и сопле;
- газодинамические процессы в ракетном двигателе;
- методы анализа и оптимизации газодинамических процессов в ракетном двигателе;
- методология проектирования камеры сгорания и сопла ракетного двигателя.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.4	ИД-1ПК-1.4	Знает: — основные понятия определения и уравнений газодинамики; — основы теории течения продуктов сгорания ракетных топлив (однофазных и двухфазных) в камере сгорания и в сопле; — методологию газодинамического расчёта элементов ракетного двигателя (камеры сгорания и сопла).	Знает теоретические основы рабочих процессов в двигателях летательных аппаратов.	Экзамен

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.4	ИД-2ПК-1.4	Умеет: — формулировать критерии и направления оптимизации газодинамических процессов; — оценивать конструкторские мероприятия по повышению газодинамической эффективности и надёжности двигателя летательного аппарата; — формулировать конструкторские мероприятия, направленные на обеспечение газодинамической эффективности двигателя летательного аппарата.	суперкомпьютерными технологиями для моделирования рабочих процессов в двигателях летательных аппаратов и их агрегатах.	Защита лабораторной работы
ПК-1.4	ид-3ПК-1.4	Владеет — методами анализа мероприятий, направленных на повышение газодинамической эффективности и надёжности двигателя летательного аппарата; — перспективными методиками исследования газодинамических процессов в двигателе летательного аппарата и повышением их эффективности.	Владеет навыкамипостановки исследовательских задач, планирования и проведения вычислений, анализа и обобщения результатов моделирования при проведении научно-исследовательских и опытно-конструкторских работ при проектировании двигателей летательных аппаратов.	Курсовая работа

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 1
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	45	45
- лекции (Л)	18	18
- лабораторные работы (ЛР)	25	25
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)		
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	63	63
2. Промежуточная аттестация		
Экзамен	36	36
Дифференцированный зачет		
Зачет		
Курсовой проект (КП)		
Курсовая работа (КР)	18	18
Общая трудоемкость дисциплины	144	144

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	-	Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
1-й семестр				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Основные понятия, определения и уравнения газовой	6	6	0	16
динамики				
Введение.				
История развития ракетных двигателей. Основные				
элементы ракетного двигателя и газодинамические				
процессы, проходящие в них. Связь газодинамики с				
другими дисциплинами. Основные задачи				
газодинамики двигателей летательных аппаратов.				
Тема 1. Векторно-тензорный математический				
аппарат для описания сплошной среды. Скалярные, векторные и тензорные величины и				
действия с ними. Векторные операторы и действия с				
ними. Поток вектора и теорема Остроградского -				
Гаусса. Циркуляция вектора и теорема Стокса.				
Полная, локальная и конвективные производные.				
Тема 2. Основные понятия и определения				
газодинамики.				
Свойства жидкостей и газов. Сжимаемость.				
Сжимаемый и несжимаемый газ. Вязкость. Вязкий и				
невязкий газ. Сплошность среды. Элементарный				
объём. Число Кнудсена. Линии тока, трубка тока,				
элементарная струйка. Методы изучения движения				
газа (Лагранжев и Эйлеров подходы).				
Тема 3. Основные положения теории				
гидрогазодинамики.				
Уравнение неразрывности. Уравнение движения				
невязкой (идеальной) жидкости (уравнение Эйлера).				
Уравнение движения вязкой жидкости (уравнение				
Навье-Стокса). Уравнение энергии. Начальные и				
граничные условия. Критерии гидродинамического и				
теплового подобия. Стационарное и нестационарное				
(установившееся и неустановившееся), ламинарное и турбулентное, потенциальное и вихревое движения				
газа.				
	4		0	1.6
Термогазодинамика ракетного двигателя	4	6	0	16
Тема 4. Термодинамика газовых потоков.				
Первый закон термодинамики для газовых потоков.				
Энтальпия заторможенного потока. Статические				
параметры и параметры заторможенного потока.				
Характерные скорости и относительные параметры				
течения. Сопло Лаваля. Тема 5. Одномерные течения газа.				
Основные уравнения одномерного потока.				
Одномерные течения при различных воздействиях на				
поток. Закон обращения воздействия. Реактивная сила				
(тяга) ракетного двигателя. Расчёт тяги ракетного				
двигателя на разных высотах. Удельный импульс.				
Газодинамика в камере сгорания ракетного двигателя	4	6	0	16

Наименование разделов дисциплины с кратким содержанием		ем аудито і по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Тема 6. Квазистационарный процесс течения газа в камере сгорания. Камеры сгорания ракетного двигателя: изобарная, скоростная (предельный случай – камера с полутепловым соплом), с распределённым подводом рабочего тела (предельный случай – полурасходное сопло).				
Течение продуктов сгорания в сопле ракетного двигателя	4	7	0	15
Тема 7. Течение газа в соплах. Модели течения газа в соплах: равновесное, неравновесное, химически замороженное. Изоэнтропность процесса расширения. Теоретические основы исследования параметров течения: модель невязкого нетеплопроводного газа. Тема 8. Двухфазные течения продуктов сгорания в РДТТ. Особенности движения двухфазной смеси. Основные допущения и схема расчёта. Уравнения одномерного течения двухфазных продуктов сгорания в сопле. Механизм столкновения частиц. Дробление частиц. Коагуляция частиц. Двухфазные потери в сопле и их составляющие.				
ИТОГО по 1-му семестру	18	25	0	63
ИТОГО по дисциплине	18	25	0	63

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Анализ стационарного и нестационарного течения газа
2	Анализ невязкого и вязкого течения газа
3	Анализ ламинарного и турбулентного движения газа
4	Анализ потенциального и вихревого движения газа
5	Анализ течения газа в сопле Лаваля
6	Профилирование сопла Лаваля
7	Расчёт газовых течений с помощью газодинамических функций
8	Расчёт тяги ракетного двигателя
9	Анализ течения вязкого газа в цилиндрическом канале
10	Анализ течения вязкого газа в конической трубе
11	Анализ газодинамических процессов в изобарной камере сгорания ракетного двигателя

№ п.п.	Наименование темы лабораторной работы				
12	Анализ газодинамических процессов в скоростной камере сгорания ракетного двигателя				
13	Анализ течения двухфазных продуктов сгорания в камере сгорания ракетного двигателя				
14	Анализ течения двухфазных продуктов сгорания в сопле ракетного двигателя				

Тематика примерных курсовых проектов/работ

№ п.п.	Наименование темы курсовых проектов/раоот	
1	Расчет удельного импульса ракетного двигателя в атмосфере на разных высотах полёта	

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	•	
	Библиографическое описание	Количество
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в
	год издания, количество страниц)	библиотеке
	1. Основная литература	
1	Ерохин Б. Т. Теория и проектирование ракетных двигателей:	26
	учебник для вузов. Санкт-Петербург [и др.] : Лань, 2015. 596 с. 49,40	
	усл. печ. л.	
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Абрамович Г. Н. Прикладная газовая динамика: учебник для втузов.	27
	4-е изд., перераб. Москва: Наука: Физматлит, 1976. 888 с.	
2	Губертов А.М., Миронов В.В., Борисов Д.М. Газодинамические и	27
	теплофизические процессы в ракетных двигателях твердого топлива.	
	М.: Машиностроение, 2004. 511 с.	
3	Добровольский М.В. Жидкостные ракетные двигатели. Основы	15
	проектирования: учебник для вузов. 2-е изд., перераб. и доп. Москва	
	: Изд-во МГТУ им. Н. Э. Баумана, 2006. 486 с.	
	2.2. Периодические издания	
1	Вестник ПНИПУ. Аэрокосмическая техника. Пермь: Изд-во	
	ПНИПУ, 2012	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	 ІНЫ
	Не используется	
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
ľ '	r ' *	https://e.lanbook.com/book/1	
	Жидкостные ракетные двигатели. Основы проектирования: учебник Москва: МГТУ им. Баумана. Золотая коллекция, 2014		свободный доступ
	r · · · · · · · · · · · · · · · · · · ·	https://e.lanbook.com/book/1 06391	сеть Интернет; свободный доступ

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Основная	Ерохин Б. Т. Теория и	https://e.lanbook.com/book/1	сеть Интернет;
литература	проектирование ракетных	68767	свободный доступ
	двигателей : учебник для вузов /		
	Б. Т. Ерохин Санкт-Петербург		
	[и др.]: Лань, 2021.		

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	MS Windows 7 (подп. Azure Dev Tools for Teaching до 27.03.2022)
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017
Прикладное программное обеспечение общего назначения	MATHCAD 14 Academic, ПНИПУ 2009 г.
Прикладное программное обеспечение общего назначения	Mathematica Professional Version (лиц.L3263-7820*)
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и внедрением	ANSYS (лиц. 1062978)

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс		
База данных Scopus	https://www.scopus.com/		
База данных Web of Science	http://www.webofscience.com/		
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/		
Электронно-библиотечеая система Лань	https://e.lanbook.com/		
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/		
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/		

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Курсовая работа	Компьютеры	12

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лабораторная работа	Компьютеры	12
Лекция	Компьютер	1
Лекция	Проектор	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Газовая динамика двигателей летательных аппаратов»

Приложение к рабочей программе дисциплины

Направление подготовки:	24.04.05 «Двигатели летательных аппаратов»				
- Направленность (профиль)	Суперкомпьютерные технологии проектирования двигателей				
образовательной программы:	летательных аппаратов				
Квалификация выпускника:	магистр				
Выпускающая кафедра:	Ракетно-космическая техника и энергетические системы				
Форма обучения:	очная				
Kypc: 1	Семестр: 1				
Трудоёмкость: Кредитов по рабочему учебному плану: Часов по рабочему учебному плану:	4 ЗЕ 144 ч.				

Виды промежуточного контроля:

Экзамен: 1 семестр.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации программы, образовательной которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД, освоение учебного материала дисциплины запланировано в течение одного семестра (1-го семестра учебного плана) и разбито на 2 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля				
		Текущий		жный	Итоговый	
		TO	ОЛР	Т/КР	Экзамен	
Усвоенн	ые знан	ия				
3.1 Знать основные понятия, определения и уравнения газодинамики		TO1		КР1	TB	
3.2 Знать методологию газодинамического расчёта элементов ракетного двигателя		TO2		КР2	ТВ	
Освоенні	ые умен	ия				
У.1 Уметь формулировать критерии оптимизации газодинамических процессов			ОЛР1 ОЛР2	KP1	ПЗ	
У.2 Уметь формулировать конструкторские мероприятия, направленные на обеспечение газодинамической эффективности двигателя ДЛА			ОЛР3 ОЛР4 ОЛР5	КР2	ПЗ	
Приобретен	ные вла	дения		•	<u>.</u>	
В.1 Владеть методами анализа мероприятий, направленных на повышение эффективности газодинамических процессов			ОЛР6		КЗ	
В.2 Владеть методами анализа мероприятий, направленных на повышение газодинамической эффективности двигателя ДЛА			ОЛР7		К3	

C- собеседование по теме; TO- коллоквиум (теоретический опрос); K3- кейс-задача (индивидуальное задание); $O\Pi P-$ отчет по лабораторной работе; T/KP- рубежное тестирование (контрольная работа); TB- теоретический вопрос; TB- практическое задание; TB- комплексное задание дифференцированного зачета.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации К учебе предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, специалитета И магистратуры ПНИПУ предусмотрены следующие виды И периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений компетенций (табл. 1.1) проводится в форме защиты лабораторных работ и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 7 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины. Первая КР по модулю 1 «Основные понятия, определения и уравнения газовой динамики», вторая КР – по модулю 2 «Термогазодинамика ракетного двигателя».

Типовые задания первой КР:

- 1. Ввести основные понятия и определения газодинамики.
- 2. Написать систему дифференциальных уравнений невязкого газа.
- 3. Написать систему дифференциальных уравнений вязкого газа.
- 4. Рассмотреть стационарное и нестационарное, ламинарное и турбулентное, потенциальное и вихревое движения жидкости.
 - 5. Определить статические и динамические параметры потока газа.

Типовые задания второй КР:

- 1. Определить характерные скорости и относительные параметры течения.
- 2. Написать основные уравнения одномерного потока.
- 3. Реактивная сила (тяга) ракетного двигателя. Расчёт тяги ракетного двигателя.
- 4. Рассмотреть разные модели течения газа в соплах: равновесное, неравновесное, химически замороженное и фазово- замороженное.
- 5. Описать особенности движения двухфазной смеси в камере сгорания и сопле РДТТ.

Типовые шкала и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности всех заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1 Типовые вопросы и задания для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Закон обращения воздействия.
- 2. Модели течения газа в соплах: равновесное, неравновесное, химически замороженное.
 - 3. Реактивная сила (тяга) ракетного двигателя.
- 4. Камеры сгорания ракетного двигателя: изобарная, скоростная, с распределённым подводом рабочего тела.
 - 5. Особенности движения двухфазной смеси в камере сгорания и сопле РДТТ.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Определить критерии Прандтля и Рейнольдса в критическом сечении сопла РДТТ при заданном составе топлива и параметрах двигателя.
- 2. Определить потери удельного импульса в сопле РДТТ, связанные с химической неравновесностью процесса расширения потока при заданном составе топлива и параметрах двигателя.
- 3. Определить потери удельного импульса в сопле РДТТ, связанные с фазовой неравновесностью процесса расширения потока при заданном составе топлива и параметрах двигателя.
 - 4. Составить схему расчёта движения двухфазной смеси в сопле РДТТ.

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2 Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных дисциплинарных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС магистерской программы.

3. Критерии оценивания уровня сформированности компонентов компетенций

3.1 Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2 Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.